

February 2019

TABLE OF CONTENTS

The Astronomy Department3
The Graduate Program4
Facilities6
Faculty Bios7
Public Outreach12
Faculty Research14

Astronomy Department

Columbia University

Located in New York City, Columbia University offers a graduate program in astronomy and astrophysics with a primary focus on the development of research skills. The goal of this program is to produce creative and independent scientists who will advance the frontiers of our discipline, educate the next generation of astronomers, and engage the public in our endeavor to understand the Universe. Our community includes faculty, researchers, and students in Astronomy and Astrophysics at Columbia University, Barnard College, NASA's Goddard Institute for Space Studies, the American Museum of Natural History and the Simons Center for Computational Astronomy, all of whom are pursuing a wide range of theoretical, computational, observational, and experimental research.

THE CHANGE OF SHAME PROCESSION

The graduate program for the Ph.D. is designed to foster the intellectual and professional development of our students. To this end, graduate students are fully integrated into all of our Department's activities.

The primary goal of the program is to cultivate the ability to perform original, independent research. Shortly after arrival on campus, incoming students choose their first faculty-guided research project. In the first two years, each student will work with two different faculty members in two distinct areas of astronomy. Many students submit the results of these research projects for publication in professional journals. Instead of a traditional qualifying exam, research exams are held at the completion of the first and second year. Our course requirements are designed to impart the knowledge necessary for research in astronomy. The culmination of this two years of preparation comes in the form of a dissertation proposal presented before a committee in the third year. The remaining part of the graduate student's career is devoted to completing a seminal piece of original research.

Another important aspect of the Columbia Astronomy
Department's graduate program is the development of teaching
skills. After a year of apprenticeship, graduate students in their
second year design and teach their own introductory astronomy
laboratory courses for undergraduates. Additionally, graduate
students may choose to become involved with our extensive
outreach programs in New York City, or with the education and
exhibition activities at the American Museum of Natural History.

We are proud to report that several of our recently graduated students have gone on to earn prestigious postdoctoral fellowships (including the Hubble, Sagan, Chandra, Einstein and Jansky Fellowships), and that many of our alumni hold permanent positions at top research institutions world-wide (see http://www.astro.columbia.edu/directory/former for a complete listing of graduates over the past twenty years).

FACILITIES

The Astronomy Department is a partner in the MDM Observatory Consortium with a 25% share of the 1.3-meter McGraw-Hill telescope and the 2.4-meter Hiltner telescope on Kitt Peak in Arizona. Graduate students doing observational research receive a large fraction of the annual 150 nights observing time on the two telescopes. In addition, the Observatory provides an ideal opportunity for designing, building, testing, and using innovative optical and near-IR instrumentation developed in our laboratories. We are also part of the Prime Focus Spectrograph on the Subaru telescope, the LSST Collaboration, and SDSS-V.

The Columbia Astrophysics Laboratory, a joint endeavor involving the Astronomy and Physics Departments, has extensive experience in the design and construction of new astronomical instruments for rocket, satellite and balloon missions, as well as ground-based telescopes. Facilities at our Nevis site include laboratories and equipment for testing and assembling experiments, an electronics shop, and an instrument machine shop. In addition, there is a fully equipped machine shop available for student use in the Pupin Building and additional laboratories for instrument development. Current projects include NuSTAR (the first hard X-ray imaging satellite launched in 2012), millimeter receivers for Cosmic Microwave Background experiments, instrumentation for the Laser Interferometer Gravity-wave Observatory, UV instrumentation, laboratory astrophysics, and CCD cameras.

Every week two invited speakers give separate Physics and Astronomy colloquia. The Astronomy Department also holds Thursday seminars, a journal club, astro-ph coffee, and a Pizza Lunch every Tuesday where attendees can informally learn about research activities in the Department.

The Astrophysics Laboratory and Astronomy Department maintain a large network of workstations and each student is assigned a private computer on arrival. Additionally, the Department maintains three computing clusters capable of completing complex simulations of astrophysical phenomena and is an affiliate of the new Simons Center for Computational Astrophysics.

MARCEL AGÜEROS (Associate Professor)

Professor Agüeros received his B.A. in Astronomy from Columbia University before earning an M.Phil in Physics from the University of Cambridge (UK) and his Ph.D. in Astronomy from the University of Washington. He was a National Science Foundation Astronomy and Astrophysics Postdoctoral Fellow in the Columbia Astrophysics Laboratory for four years before joining the faculty. He served as the Director of Columbia's Bridge to the Ph.D. Program in STEM and is currently on the Board of Trustees of the American Astronomical Society (AAS).

JAMES H. APPLEGATE (Professor)

Professor Applegate received his B.S. in Astrophysics from Michigan State University and his Ph.D. in Physics from SUNY at Stony Brook. He was a Bantrell Research Fellow at the California Institute of Technology, and is a previous chair of the Astronomy Department at Columbia.

GREG BRYAN (Professor)

Professor Bryan received his B.Sc. in physics from the University of Calgary (Canada) and his Ph.D. from the University of Illinois. He received a Hubble Fellowship, Lyman Spitzer Fellowship, and an NSF Career Grant. He also received the Leverhulme Trust Prize for "outstanding young researchers." He was a faculty member in the Physics Department at Oxford for three years before coming to Columbia University.

ZOLTAN HAIMAN (Professor)

Professor Haiman received a Physics B.S. degree from MIT, and attended graduate school in Cambridge, UK, and at Harvard University, where he received a Ph.D. in Astronomy in 1998. He was chosen as one of Popular Science Magazine's Brilliant 10 young scientists in 2002, received the New York Academy of Sciences Blavatnik Award in 2010, and a Simons Fellowship in Theoretical Physics in 2016. He was a Hubble Fellow at Princeton and a postdoc in the theory group at Fermilab before joining the Columbia faculty.

JULES P. HALPERN (Professor)

Professor Halpern received his B.S. from MIT and his Ph.D. from Harvard University. He was a research fellow in Astronomy at the California Institute of Technology before becoming an Astronomy professor at Columbia University. He is a winner of the AAS Rossi Prize.

DAVID HELFAND (Professor)

Professor Helfand received his B.A. from Amherst College, and an M.S. in Physics Ph.D. in Astronomy from the University of Massachusetts. He was a visiting scientist at the Danish Space Research Institute and the Sackler Distinguished Visiting Astronomer at Cambridge. He has also been a professor in both Physics and Astronomy at Columbia. He recently returned from an extended leave during which he served as President & Vice Chancellor of Quest University Canada, an innovative new institution he helped to design, and also as President of the AAS.

KATHRYN JOHNSTON (Professor)

Professor Johnston received undergraduate degree from the University of Cambridge in Maths and her Ph.D. in astronomy and astrophysics from UC-Santa Cruz. She was a member of the Institute for Advanced Study at Princeton, and then an assistant professor at Wesleyan University, where she was a recipient of an NSF CAREER Award. She joined the Columbia Astronomy faculty in 2006.

DAVID KIPPING (Assistant Professor)

Professor Kipping received his B.A. and M.Sc. in Natural Sciences from Cambridge University, and earned his Ph.D. in Astrophysics at University College London in 2011. He held Sagan and Menzel Postdoctoral Fellowships at the Harvard-Smithsonian Center for Astrophysics before coming to Columbia in 2015. He was named as one of Popular Science Magazine's "Brilliant Ten" young scientists in 2015 and an Alfred P. Sloan Research Fellow in 2018.

MELISSA NESS (Assistant Professor)

Professor Ness received undergraduate degree from the University of Queensland and her Ph.D. from the Australian National University in Canberra, Australia in 2013, winning the J. G. Crawford Award for best thesis that year. She was a Postdoctoral Fellow at the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany, where she won the Patzer award for best refereed publication in 2015. She joined the Columbia Astronomy faculty in 2018.

JERRY OSTRIKER (Professor)

Professor Ostriker received his B.A. from Harvard University and his Ph.D. from the University of Chicago working under Prof. Chandrasekhar. Following postdoctoral work at Cambridge University he joined the faculty at Princeton for 44 years, serving as Department Chair for much of the time and as Provost of the University from 1995-2001. He was Plumian Professor at Cambridge for the ensuing three years before returning to Princeton and then moving to Columbia in 2012. He is a member (and Treasurer) of the National Academy of Sciences and winner of the 2015 Gruber Cosmology Prize along with many other honors.

FRITS PAERELS (PROFESSOR)

Professor Paerels received his Ph.D. from the University of Utrecht (Netherlands). He was a research scientist at Columbia before becoming a Senior Scientist of SRON Space Research Laboratory in the Netherlands. He is currently serving as the director of undergraduate studies.

JOSEPH PATTERSON (PROFESSOR)

MARY E. PUTMAN (Professor)

Professor Putman received her B.S. in Astronomy and Physics from University of Wisconsin-Madison and her Ph.D. in Astronomy and Astrophysics from the Australian National University (Mt. Stromlo Observatory). She has received a Hubble Postdoctoral Fellowship, the Elizabeth C. Crosby Award, an NSF CAREER Award, Cottrell Scholarship, and a Clare Boothe Luce Professorship.

CALEB SCHARF (Senior Lecturer in Discipline in Astronomy)

Caleb Scharf received his B.Sc. in Physics from Durham University, and his Ph.D. in Astronomy from the University of Cambridge. Following postdoctoral work at the NASA Goddard Space Flight Center and the Space Telescope Science Institute in Maryland, he is currently Director of the multidisciplinary Columbia Astrobiology Center. He is the highly-acclaimed author of the undergraduate textbook Extrasolar Planets and Astrobiology and of several popular books.

DAVID SCHIMINOVICH (Professor, Chair)

Professor Schiminovich received his B.S. in Mathematics and Physics from Yale University and his Ph.D. from Columbia University. Before his return to Columbia as a professor in 2004, he was a postdoctoral research fellow at Caltech and a visiting research scientist at Yale. Since 1997 he has been a lead scientist on the Galaxy Evolution Explorer (GALEX) project. He is co-Director of the Columbia Astrophysics Laboratory and Chair of the Department.

LORENZO SIRONI (Assistant Professor)

Professor Sironi completed his undergraduate studies in Pisa, Italy, and received his Ph.D. from Princeton University in 2011. He held a NASA Einstein Fellowship and then an ITC Postdoctoral Fellowship at Harvard University, before joining the Columbia Faculty in 2016.

EDWARD A. SPIEGEL (Professor Emeritus)

Professor Spiegel received his B.A. from UCLA and his Ph.D. from the University of Michigan. He held research positions at Princeton University, NYU, and Cambridge University; he also held faculty positions at UC Berkeley and at NYU before joining the faculty at Columbia. He is the Rutherford Professor emeritus in the Astronomy Department.

JACQUELINE VAN GORKOM (Professor)

Professor Van Gorkom received her Ph.D. in Astronomy from the Kapteyn Institute in Groningen, Holland. She was a scientist at the Jansky Very Large Array of the National Radio Astronomy Observatory in New Mexico for eight years, before joining the Columbia faculty. Over the years, she held visiting appointments at the Raman Research Institute in India, Princeton University, Berkeley, and the Kapteyn Institute. She is the Rutherfurd Professor of Astronomy.

AFFILIATED FACULTY

ELENA APRILE (Professor, Physics)

Professor Aprile received her "Laurea" from the University of Naples, Italy, and her Ph.D. from the University of Geneva, Switzerland. She is the leader of the XENON experiment that is designed to detect dark matter.

ANDREI BELOBORODOV (Professor, Physics)

Professor Beloborodov received his M.Sc. from the Moscow Institute of Physics and Technology and his Ph.D. from Lebedev Physical Institute. Prior to joining the Columbia faculty, he was a post-doctoral fellow at the Canadian Institute for Theoretical Astrophysics.

LAM HUI (Professor, Physics)

Professor Hui received his B.A. from UC Berkeley and his Ph.D. in Physics from MIT. He held postdoctoral positions at Fermilab and at the Institute for Advanced Study in Princeton, and was a faculty member at the University of Chicago and at Fermilab before becoming an associate professor of Physics at Columbia.

CHUCK HAILEY (Pupin Professor, Physics)

Professor Hailey received his B.A. from Cornell University and his Ph.D. from Columbia University. He was a research scientist and later a program leader for Astrophysics in the Physics Department at Lawrence Livermore National Laboratory; he also worked at KMS Fusion, Inc. as a senior research scientist before joining the Columbia faculty. He is co-PI of the NuSTAR mission and is co-Director of the Columbia Astrophysics Laboratory.

SZABOLCS MARKA (Walter O. LeCroy, Jr. Professor of Physics)

Professor Marka received his Diploma from Kossuth Lajos University (Hungary) and his Ph.D. from Vanderbilt University. He has previously worked at Cornell and Caltech. Currently, he is leader of the Columbia Experimental Gravity Group (a member of LIGO) in addition to being a

professor at Columbia. He received an NSF CAREER Award and two GRAND Challenges
Explorations Award from the Bill and Melinda Gates Foundation.

BRIAN D. METZGER (Associate Professor, Physics)

Professor Metzger received his Ph.D. from the University of California, Berkeley in 2009, and then held a NASA Einstein Fellowship and a Lyman Spitzer, Jr. Postdoctoral Fellowship in Princeton, before joining the Columbia Physics Department faculty in 2013. He was the recipient of an Alred P. Sloan Fellowship in 2014, the New Horizons in Physics Breakthrough Prize in 2018, and the AAS's Bruni Rossi Prize in 2019. He was also a finalist for a Blavatnik National Award in 2018.

YURI LEVIN (Professor, Physics)

Professor Levin received his Ph.D. in theoretical physics from the California Institute of Technology in 1999. He held postdoctoral fellowships at the University of California, Berkeley and at the Canadian Institute for Theoretical Astrophysics (CITA), and faculty positions at Leiden University (The Netherlands) and Monash University (Australia) before joining the Physics Department faculty in 2018. He is currently also a group leader for Compact Objects at the Center for Computational Astrophysics at the Flatiron Institute.

LAURA KAY (Professor and Chair, Barnard)

Professor Kay received her B.S. in Physics and B.A. in Feminist Studies from Stanford University and her Ph.D. in Astronomy and Astrophysics from the University of California at Santa Cruz. She is lead author of the widely used textbook "21st Century Astronomy". She is currently serving as the chair of the Department of Physics and Astronomy at Barnard College.

JANNA LEVIN (Professor, Barnard)

Professor Levin holds a B.A. in Physics and Astronomy from Barnard College and a Ph.D. from MIT in Physics. She has previously worked at the Center for Particle Astrophysics (CfPA) at U.C. Berkeley, and at Cambridge University in the Department of Applied Mathematics and Theoretical Physics. She is the author of several books including *How the Universe Got Its Spots*.

RESHMI MUKHERJEE (Helen Goodhart Altschul Professor, Barnard)

Professor Mukherjee received her B.S. from Presidency College, University of Calcutta and her M.A., MPhil, and Ph.D. degrees from Columbia University. She was previously a postdoctoral research scientist at NASA Goddard Space Flight Center and McGill University. In addition to being a professor, she has served as chair of physics

RUTH ANGUS (Assistant Adjunct Professor, AMNH)

Dr. Angus is an Assistant Curator of Astrophysics at the American Museum of Natural History, an Associate Research Scientist at the Flatiron Institute's Center for Computational Astrophysics and an Assistant Adjunct Professor at Columbia University.

REBECCA OPPENHEIMER (Adjunct Professor, AMNH)

Professor Oppenheimer received her B.A. in Physics from Columbia University and her Ph.D. in Astronomy from the California Institute of Technology. She was a Hubble Fellow at the University of California at Berkeley and at AMNH, as well as a Kalbfleisch Research Fellow at the AMNH. She is currently a curator in the Astrophysics Department of AMNH, as well as an adjunct professor at Columbia.

MORDECAI-MARK MACLOW (Adjunct Professor, AMNH)

Professor MacLow received a B.A. in Physics from Princeton University and a PhD. in Physics from the University of Colorado at Boulder. He was a postdoctoral fellow at NASA Ames Research Center at Berkeley and at the University of Chicago, and a staff member at the Max-Planck Institute in Heidelberg, Germany. He is a curator in the Department of Astrophysics at the AMNH, and the current chair of the Museum's Physical Sciences Division.

MICHAEL SHARA (Adjunct Professor, AMNH)

Professor Shara received his Ph.D. from Tel Aviv University. He was a research assistant professor at Arizona State University prior to moving to the Space Telescope Institute where he became a tenured astronomer prior to coming to New York. In addition to being an adjunct professor at Columbia, he is curator in the Physical Sciences division at AMNH.

Professional Research Officers (Columbia Astrophysics Laboratory)

DANIEL WOLF SAVIN (Senior Research Scientist)

Dr. Savin received his A.B. from Columbia University and his M.A. and Ph.D. from Harvard University. He was a Post-Graduate Research Scientist at the University of California in Berkeley. Since then, he has been a Professional Research Officer in the Columbia Astrophysics Laboratory. Dr. Savin is a founding organizer of the Laboratory Astrophysics Division (LAD) of the American Astronomical Society (AAS), a Science Editor for the AAS journals, and a Fellow of the American Physical Society.

ERIC V. GOTTHELF (Senior Research Scientist)

Dr. Gotthelf received a Ph.D. in Physics from Columbia University. He was a research scientist at NASA's Goddard Space Flight Center providing science support for the Advanced Satellite for Cosmology and Astrophysics mission. Since then, he has been a Professional Research Officer in the Columbia Astrophysics Laboratory. He is a member of the NuSTAR science team and works closely with the timing calibration group.

JENNIFER (JENO) SOKOLOSKI (Research Scientist)

Dr. Sokoloski is a leader in studies of eruptive stellar transients and interacting binary stars. She is the recipient of Scialog Collaborative Innovation awards in 2016 and 2017 for work with "the potential to transform the field of time domain astrophysics". She is also the first Director for Science at the Large Synoptic Survey Telescope (LSST) Corporation and is a past President of the American Association of Variable Star Observers.

Dr. Hahn has developed an innovative program in solar physics research, for which he received a 2012 Blavatnik Young Scientist Award from the New York Academy of Sciences. His research has broad practical implications for telecommunications, electrical grids, and satellite reliability. He is the only scientist at Columbia in solar physics and has recently initiated a novel research program in plasma physics to simulate the solar corona.

SLAVKO BOGDANOV (Associate Research Scientist)

Dr. Bogdanov received a B.S. with Honors and Distinction in Astronomy and Astrophysics from the Pennsylvania State University and an M.A. and PhD in astronomy from Harvard University. He was a Canadian Institute for Advanced Research (CIFAR) Global Fellow at McGill University, prior to joining the Columbia Astrophysics Laboratory as an Associate Research Scientist.

Public Outreach

"No one regards what is before his feet; we all gaze at the stars." – Quintus Ennius

The Columbia Astronomy Department is dedicated to bringing science to the public. In recent years we have reached over 20,000 New Yorkers through the various events of our public outreach program. Our outreach events include:

- Biweekly public lectures given by an astronomer associated with Columbia (often a graduate student) along with an observatory open house where the public can look through small and mediumsized telescopes on our roof.
- Class visits where Columbia
 astronomers provide tours of our
 department along with short
 programs demonstrating
 astronomical concepts.
- Middle School outreach with presentations by Columbia astronomers and students at local public schools.
- A program called Rooftop Variables that educates NYC teachers and helps them start astronomy clubs at their schools.

- Harlem Sidewalk Astronomy,
 where we bring telescopes
 to 125th street in Harlem and
 attract passersby by offering
 a beautiful view of the moon,
 planets, and sometimes
 even deep sky objects.
- Family Astro Saturdays are
 also held three times a year.
 This program engages
 elementary school students
 and their families in hands-on
 astronomy
- Various other public lectures and appearances around the City and beyond.

For more information about the Columbia Public Outreach
Program, see our webpage or contact the current director at:

http://outreach.astro.columbia.edu or outreach-admin@astro.columbia.edu

edit: W. Keel (U. Alabama; January 25, 199

FACULTY RESEARCH

Formation and Evolution of Stars and Planets

Professor Patterson is part of a group that formed the Center for Backyard Astrophysics, a network of primarily amateur astronomers spanning the globe and collaborating on observation of variable stars. This has provided a powerful tool to study periodic processes in cataclysmic variable stars. He has also been working for 20 years to understand the structure of DQ Her stars, often called intermediate polars. One of his major research goals is to understand the structure and evolution of cataclysmic variables, especially the oldest ones (the WZ Sge and AM CVn stars) where both components have evolved to degenerate states. For more on his research, contact him at jop@astro.columbia.edu

JAMES APPLEGATE

Professor Applegate is a theoretical physicist with broad interests in astrophysics. He has developed a model for the orbital period variations seen in very close binaries, such as the Black Widow Pulsar system PSR B1957+20. He also investigated models of the structure and evolution of tidally powered stars. He has also described the consequences of a first order phase transition in quantum chromodynamics on the early evolution of the universe, and shows how this transition might be detectable through its effect on big bang nucleosynthesis. For more on his research, contact him at jha@astro.columbia.edu

DAVID HELFAND

Professor Helfand's current research revolves around two large radio sky surveys he has undertaken with colleagues over the past twenty years: the FIRST survey of 10,000 square degrees of the extragalactic sky, and MAGPIS, a survey along the plane of the Milky Way. He also has a long-standing interest in the evolution of neutron stars and supernova remnants. His current projects include the discovery of new supernova remnants and the identification of high energy gammaray sources in MAGPIS, computation of the angular-diameter/redshift relation for double radio sources in FIRST, and studies of radio variability in both Galactic and extragalactic objects. For more on his research, contact him at djh@astro.columbia.edu

FACULTY RESEARCH

Formation and Evolution of Stars and Planets

MARCEL AGÜEROS

Professor Agüeros is an observational astronomer whose interests cover a wide range of classic problems in stellar evolution. Recently, his focus has been on exploring the main-sequence properties of low-mass stars, for example by examining the relationship between age, rotation, and magnetic activity in members of open clusters, or by studying the chemical homogeneity of wide binaries ranging in metallicity and temperature. His research typically involves combining data taken from automated, large-scale surveys (e.g. light curves collected by TESS) and from follow-up observations with ground-based or satellite telescopes (e.g. optical spectra collected with Gemini or X-ray observations made by Chandra). For more information, contact him at marcel@astro.columbia.edu

REBECCA OPPENHEIMER (AMNH)

Professor Oppenheimer is involved in comparative exoplanetary research. Specifically, she focuses on developing advanced optical instruments in order to more accurately measure and analyze the light from planets orbiting stars other than our sun. Her research involves collaboration with scientists from AMNH, Cambridge, Caltech, and NASA/JPL. A large amount of her work takes place at the Rose Center at the American Museum of Natural History (AMNH). Prof. Oppenheimer also works on faint white dwarfs, the remnants of normal stars, and brown dwarfs, star-like objects that are too small to be stars, but too large to be called planets. She is the codiscoverer of the first brown dwarf, called Gliese 229B. For more information about her research, contact her at bro@amnh.org

MICHAEL ALLISON (NASA)

Professor Michael Allison's research focuses on planetary dynamics and spaceflight mission planning. He has worked on several spaceflight projects, including Cassini and the Huygens Doppler Wind Experiment. He is particularly interested in the way the various planetary weather systems were created and maintained. His theoretical research includes studying the "potential vorticity" of weather patterns. For more on his research, contact him at Michael.D.Allison@nasa.gov

FACULTY RESEARCH

Formation and Evolution of Stars and Planets

Professor Scharf's current areas of research are exoplanetary science and astrobiology. He is particularly interested in studying the dynamical evolution of planetary systems, the effects of close-orbiting giant planets on their parent stars, and the nature of climate and habitability on terrestrial-type worlds. He is also investigating the characteristics of moon systems, the detection of exomoons, and their potential in the search for life. He recently authored the textbook "Extrasolar Planets and Astrobiology," and leads Columbia's Astrobiology Center – a consortium of scientists across many disciplines. For more on his research, contact him at caleb@astro.columbia.edu

MICHAEL SHARA (AMNH)

Professor Shara's research interests focus on novae and supernovae (SNe). He leads a group that is conducting an infrared narrowband imaging and spectrographic survey of the Milky Way, trying to locate all 7,000 expected pre-SN massive (Wolf-Rayet; WR) stars. The survey has located the most massive binary star known, and thousands of pre-SN candidates are in hand. If e one of them explodes as a SN, an important confirmation of stellar evolution theory will have been achieved. He also makes use of the Hubble Space Telescope to search for Wolf-Rayet stars in nearby galaxies. In addition, he is surveying dwarf novae to demonstrate that some have classical nova shells, establishing that there is a metamorphosis between these classes of objects. For more on his research, contact him at mshara@amnh.org

DAVID KIPPING

Professor Kipping leads the "Cool Worlds" group, which pursues a variety of science relating to extrasolar planets. From detection to characterization, the group uses astrostatistics and data science methods to understand both unique objects and ensemble populations of alien worlds, particularly thermally cool objects lying near or beyond the habitable-zone. The group is well-known for its expertise with exomoons in particular, leading the Hunt for Exomoons with Kepler project. Cool Worlds also researches novel methods to characterize planet hosting stars through a variety of methods such as flicker, stellar anchors, asterodensity profiling, and star spots. For more, contact him at dkipping@astro.columbia.edu

FACULTY RESEARCH

Structure and Evolution of Galaxies

JACQUELINE VAN GORKOM

Professor Van Gorkom's main research interest is the structure and evolution of galaxies and, more specifically, the role of gas in galaxy evolution. She studies the interplay between galaxies and their environments, leading to such questions as: What are the residual signatures of the formation process around galaxies? Do galaxies evolve along the Hubble sequence? If so, how, and in what direction? Do mergers really convert spirals to ellipticals? How does the environment affect the evolution of galaxies? Where and how are SO's made, in clusters or in groups? For more on her research, contact her at jvangork@astro.columbia.edu

MARY PUTMAN

Much remains unknown today about how galaxies evolve from a pocket of dark matter to a structured galaxy full of gas and stars. Professor Putman is currently researching gas flows into galaxies using multiwavelength observations combined with the results of high-resolution simulations. She explores galaxy evolution by examining the gaseous halos of the Milky Way and other spiral galaxies, dwarf galaxies in the Local Group, star formation in the local universe, and the properties of the intergalactic medium. For more information on Professor Putman's research, e-mail her at mputman@astro.columbia.edu

KATHRYN JOHNSTON

Professor Johnston is interested in the structure and dynamics of galaxies. Her research focuses in particular on what we can learn about these topics from our own Milky Way Galaxy and its nearest neighbors. She uses models - from simple analytic pictures to full Nbody simulations - to explore the different mechanisms that are thought to structure galaxies. She then examines her models in order to understand what signatures these mechanisms might leave in the dynamics and chemistry of stars within galaxies. For more on her research, contact her at kvj@astro.columbia.edu

FACULTY RESEARCH

Structure and Evolution of Galaxies

GREG BRYAN

Professor Bryan's research has tackled a broad range of problems in cosmology. He has pioneered the use of adaptive, three--dimensional numerical simulations, and is the principal author of the widely used and publicly available simulation code Enzo. He has worked on understanding the formation of the first stars in the universe, as well as the large--scale cosmic structures that form later, such as galaxies, clusters of galaxies, and the intergalactic medium that fills space between these objects. He is also interested in developing visualization methods for threedimensional simulations, and his work has been featured in exhibits at the American Museum of Natural History, and in the Oscar-nominated IMAX film "Cosmic Voyage". For more on his research, contact him at qbryan@astro.columbia.edu

MELISSA NESS

Professor Ness uses stars as tools to understand the Milky Way's formation. She is particularly interested in understanding the relationship between the ages, chemical abundances, and orbital properties of stars, across the Milky Way disk and bulge. She is working with a number of datasets to examine our Galaxy, including GALAH, APOGEE, Kepler, and Gaia. She is also very interested in developing sensible and efficient methodologies to extract information from data and to interpret this (high dimensional) information. For more on her research, contact her at melissa.ness@columbia.edu

MORDECAI MAC LOW (AMNH)

Professor Mac Low studies the formation and evolution of planets, stars and galaxies, and the structure of the interstellar medium. He has placed a particular emphasis on understanding the role of turbulence and magnetic fields in these processes. Much of his work uses supercomputers to perform numerical gas dynamics and magnetohydrodynamic (MHD) simulations. He has also been lead curator on the Hayden Planetarium Space Show "Journey to the Stars," and had his simulations included in two others. For more information about his research, contact him at mordecai@amnh.org

FACULTY RESEARCH

Large Scale Structure and Cosmology

DAVID SCHIMINOVICH

Professor Schiminovich is studying galaxy formation and the intergalactic medium in order to understand the processes that trigger and quench star formation over cosmic time. He has developed UV instrumentation to study faint signatures from gas and stars around galaxies. He is currently working on data from the Galaxy Evolution Explorer (GALEX), a UV satellite, as well as the FIREBall experiment, a balloon-borne UV spectrograph designed to produce maps of the cosmic web, the 3D structure of the gaseous universe. In doing so, he is looking for signatures of gas that is primarily involved in star formation. He is continuing to develop novel instrumentation and is planning several future space experiments and satellite missions. Contact him at ds@astro.columbia.edu or visit sgl.astro.columbia.edu

ZOLTAN HAIMAN

Professor Haiman is a theoretical astrophysicist and cosmologist. He is currently involved in three areas of research. He studies the expected properties of the first generation of stars and black holes in order to gain insight into the earliest stages of cosmic structure. He has worked on possible ways to understand the nature of dark energy and dark matter, especially with techniques looking for tell-tale signatures in large-scale cosmic structures. Finally, he has been interested in the emerging field of gravitational wave astronomy, in particular in the gravitational waves from the collisions of supermassive black holes at the centers of galaxies and the corresponding electromagnetic signatures of such events. For more information about his research, contact him at zoltan@astro.columbia.edu

JERRY OSTRIKER

Professor Ostriker's research has ranged over most field of modern astrophysics. His most recent papers cover such topics as hyper-Eddington accretion flows onto massive black holes, the effects of both AGN and supernova feedback on star formation in galaxies, galaxy mergers, the evolution of globular clusters and galactic nuclei, interstellar grain physics and the infrared emission from dust in AGN and speculations on the nature of the dark matter. To hear more about these and other topics, contact him at ipo@astro.columbia.edu

FACULTY RESEARCH

Large Scale Structure and Cosmology

ELENA APRILE (PHYSICS)

Professor Aprile's current research includes the experimental study of dark matter. She specifically works to develop dark matter detectors using cryogenic noble liquids such as Xenon and Argon. She is the P.I. for the Xenon Experiment, which is designed to detect the likely components of dark matter - weakly interacting massive particles (WIMPS). For more on her research, contact her at age@astro.columbia.edu

CHUCK HAILEY (PHYSICS)

Professor Hailey studies the development of new balloon borne and satellite borne instrumentation and experiments in order to solve astrophysical problems. He is currently working on the NuSTAR project, which is the first high energy astrophysics mission to use hard X-ray optics focused in the 10-70 keV band to conduct a census of black holes in the universe. This instrument provides approximately 300 times the sensitivity of previous missions. The optics for NuSTAR was built and calibrated at Columbia University. Professor Hailey is also involved in the General Anti-Particle Spectrometer experiment (GAPS). This mission will search for cosmic anti-deuterons that are a byproduct of dark matter interactions with the galactic halo. For more on his research, contact him at chuckh@astro.columbia.edu

LAM HUI (PHYSICS)

Professor Hui has broad research interests in theoretical astrophysics and cosmology. He has worked on large-scale structure, the intergalactic medium, gravitational lensing, early universe physics, particle astrophysics and extrasolar planets. His current research focuses on modifications to general relativity on cosmological scales, preinflationary perturbations from bubble collisions, and magnetospheres of neutron stars and black holes. For more on his research, contact him at lh399@columbia.edu

FACULTY RESEARCH

High Energy and Theoretical Astrophysics

JULES HALPERN

Professor Halpern investigates the extreme physical properties of young neutron stars through timing and spectroscopy at X-ray and radio wavelengths. This reveals their strongest magnetic fields, found in magnetars, as well as their weakest, found in the so-called Central Compact Objects (CCOs). He also uses X-ray and optical observations to identify gamma-ray sources as new, young pulsars, as well as to discover old, recycled (millisecond) pulsars in binary systems. More generally, he is interested in the structure and evolution of accreting and non-accreting compact objects, from cataclysmic variables to active galactic nuclei. His uses the X-ray observatories Chandra, XMM-Newton, Swift, and NuSTAR, the Fermi Gamma-ray Space Telescope, and the MDM Observatory. Contact him at jules@astro.columbia.edu

FRITS PAERELS

Professor Paerels' main research topics include X-ray astronomy and spectroscopy, the intergalactic medium, and properties of neutron stars. He is involved in the analysis of data coming from the XMM-Newton X-ray observatory. He has also done analysis on data from the Chandra X-ray telescope. In addition, he plans to use X-ray data to map high-redshift dust in the intergalactic medium. Finally, he plans to look at the X-ray emission from the local IGM. For more on his research, contact him at frits@astro.columbia.edu

LORENZO SIRONI

Professor Sironi investigates the origin of non-thermal emission from pulsar wind nebulae, AGN jets, fast radio bursts, gamma-ray bursts, supernovae, galaxy clusters, and low-luminosity accretion flows like Sqr A* around the supermassive black hole in our Galaxy. It is still a mystery how these objects accelerate particles up to the high energies required to explain the observed emission, typically extending from the radio up to the gamma-ray band. By means of ab-initio large-scale plasma simulations, he investigates particle acceleration in shocks, turbulence and magnetic reconnection from first principles, with the aim of using these simulations to interpret the observations, and ultimately unveil the nature of astrophysical nonthermal sources. For more, contact him at Isironi@astro.columbia.edu

FACULTY RESEARCH

High Energy and Theoretical Astrophysics

SZABOLCS MARKA (PHYSICS)

Professor Marka is an experimental physicist. His research is focused on the effort to directly detect gravitational waves of cosmic origin, which will allow for the study of cosmic processes and objects unreachable through conventional methods based on electromagnetic observations. His current major interest is astrophysical triggerbased data analysis and essential development/diagnostic projects aimed towards enhancing the astrophysical reach and reliability of the Laser Interferometer Gravitational-wave Observatory (LIGO). He also heads up the Columbia Experimental Gravity Group (GECo). For more information on GECo, please visit geco.phys.columbia.edu. For more, contact him at smarka@phys.columbia.edu

BRIAN D. METZGER (PHYSICS)

Professor Metzger's research includes a broad range of topics in theoretical astrophysics, focused on high-energy and stellar astrophysics. A unifying theme of his research is a connection to transient phenomena, motivated by the many sensitive, wide-field telescopes coming online in the next decade across the electromagnetic spectrum. He is particularly excited by the scientific potential of the upcoming generation of gravitational wave interferometers, such as Advanced LIGO, and the promise for a future era of "gravitational wave astronomy". For more on his research, contact him at bmetzger@phys.columbia.edu

YURI LEVIN (PHYSICS)

Professor Levin works on several topics in theoretical astrophysics. His main interests are neutron stars (especially magnetars and neutron stars in low-mass X-ray binaries), supermassive black holes (especially the one in our Galaxy, called Sagittarius A*) and astrophysical gravitational waves. For more on his research, contact him at y13470@columbia.edu

FACULTY RESEARCH

High Energy and Theoretical Astrophysics

Professor Levin's astrophysicsal research focuses on black hole pairs. In an extreme binary system, a small black hole orbits a supermassive black hole millions of times the mass of the sun. As they orbit, the pair bangs on the drum of spacetime itself thereby emitting a black hole song in the form of gravitational waves. Over time, the orbit decays until the pair merges. Professor Levin also studies the effect of black hole scattering on gravitational waves. In this case, two comparably sized black holes scatter off each other, become gravitationally bound, and emit a gravitational wave with each pass. She also researches various multi-dimensional theories of string cosmology. To find out more about her research, contact her at www.jannalevin.com

RESHMI MUKHERJEE (Barnard)

Professor Mukherjee is involved in several projects. She studies GeV/TeV gamma rays from astrophysical sources with VERITAS, an air Cherenkov telescope located in southern Arizona. VERITAS detects Cherenkov radiation from energetic particles produced by the interaction of a gamma-ray primary in the atmosphere using four 12-m optical reflectors on the ground. She is also involved in the Cherenkov Telescope Array (CTA), which is an advanced facility for ground-based gamma-ray astronomy being planned for the future. Her general research topics include experimental astrophysics, gamma ray sources, active galactic nuclei, and the study of high energy sources using the Fermi Gamma-Ray Space Telescope. For more, contact her at muk@astro.columbia.edu.

FACULTY RESEARCH

High Energy and Theoretical Astrophysics

ANDREI BELOBORODOV (PHYSICS)

Professor Beloborodov is a theoretical astrophysicist interested in relativistic astrophysics. His work focuses on compact objects such as black holes and neutron stars. His research topics include X-ray binaries, pulsars, active galactic nuclei, and cosmological gamma-ray bursts. These are all cosmological high-energy sources. He is currently developing a new method of gravity estimation called "orbital roulette." This method could be used in the future to estimate the mass of dark matter in our Galaxy, stellar clusters, and clusters of galaxies. For more on his research, contact him at amb@phys.columbia.edu

MALVIN RUDERMAN (PHYSICS)

Professor Ruderman works on problems associated with collapsed objects, especially neutron stars. This has been particularly exciting as new unexpected phenomena involving these stars continue to be discovered. Some neutron stars are extraordinarily efficient as accelerators for extremely relativistic particles and their gamma-ray emission. Others have sudden jumps ("glitches") in their spin rates. Magnetic fields on neutron star surfaces are observed to range from less than a billion Gauss to more than a million times larger. Within our galaxy, there are young strongly magnetized neutron stars which support repeated explosions. Distant ones may be the source of extraordinary explosions in which perhaps a tenth of their rest mass energy is converted to bursts of gamma-rays. For more, contact him at mar@astro.columbia.edu

Credit: pinksplash.com

